

EURISOL DS PROJECT MULTI-MW TARGET DESIGN STUDIES

Adonai Herrera-Martínez & Yacine Kadi on behalf of T2

European Organization for Nuclear Research, CERN CH-1211 Geneva 23, SWITZERLAND Adonai.herrera.martinez@cern.ch

SPL meeting, CERN – Geneva, Switzerland

7 December, 2005

- 1. Technical Challenges of the EURISOL MMW Target
 - Large Neutron Fluxes and Power Densities
 - Confinement of High-Energy Particles
- 2. Sensitivity Studies
 - Particle Escapes / Neutron Yields / Power Densities
 - Conclusions: Baseline Parameters
- 3. Comparison between 1 and 3.5 GeV
 - Primary Particle Flux \rightarrow Damage and Shielding
 - Neutron Flux and Energy Spectra
 - Fission Densities \rightarrow Isotopic Yields
 - Energy Deposition \rightarrow Temperature Increase

4. Conclusions

- The objective is to perform technical preparative work and demonstration of principle of a high-power target station for production of Radioactive Ion Beams (RIBs) using a liquid Hg proton-to-neutron converter-target coupled to a fission target, where the RIBs are generated. This converter is technologically similar to the targets being developed for spallation neutron sources, accelerator-driven systems and neutrino factories.
- 2. This high-power target will make use of **innovative concepts** that can only be successfully applied in a common effort of several European laboratories within the three communities and their proposed design studies.
- 3. In our study, emphasis is put on the most specific item, the **compact window or windowless liquid-metal converter-target** itself, while the design of other aspects of the facility are taken from studies performed by other EURISOL tasks or even from other networks such as ADVICES, IP-EUROTRANS.

- High-Power Issues
 - Thermal Management
 - Target melting
 - Target vaporization
 - Radiation
 - Radiation protection
 - Radioactivity inventory
 - Remote handling
 - Thermal Shock
 - Beam-induced pressure waves
 - Material Properties

- Projectile Particle: Proton vs. Deuteron
- Beam Shape: Gaussian (1 35 mm σ) vs. Parabolic beam
- Energy Range: 1 2 3 GeV
- Liquid Target Material: Hg vs. LBE
- Target Length: 40 60 80 100 cm
- Target Radius: 20 30 40 cm
- Spatial and energy particle distribution

• Fission Target Composition: Natural vs. Depleted Uranium

- The use of a 1 or perhaps 2 GeV proton beam on a compact (~15 cm radius ~50 cm long) Hg target would bring about important neutron yields with a reasonable charged particle confinement, therefore avoiding the need of a beam dump. The increase in the proton energy up to 2 GeV and use of a wide Gaussian beam profile, or even better, an equivalent parabolic beam, significantly reduces the maximum power densities in the target, improving the conditions for a proper heat removal, since this issue may be the bottleneck in the design.
- With respect to the use of deuterons as projectile, the neutron yield is increased by ~15% but the maximum power density is increased by ~30%. This fact and the increasing cost of a deuteron machine may justify the choice of protons.
- Considering these facts, a baseline design was proposed, where a 15 cm radius 60 cm long Hg target with a conical void and a cylindrical flow guide was designed, surrounded by a cooling helium tank. Around this converter block, a 3 cm thick ^{nat}UCx fission target was foreseen, together with a beryllium oxide reflector to recuperate the escaping neutrons.

Baseline Parameters of the MMW Hg Target

Parameter	Symbol	Units	Nval	Range
Converter Target material	Z _{conv}	-	Hg (liquid)	LBE
Secondary Target material	Z _{targ}	-	UC _x , BeO	
Beam particles	Z _{beam}	-	Proton	Deuteron
Beam particle energy	E _{beam}	GeV	1	≤ 2
Beam current	I _{beam}	mA	4	2 – 5
Beam time structure	-	-	CW	Pulsed 50Hz 1ms pulse
Gaussian beam geometry	S _{beam}	mm	15	\leq 25, parabolic
Beam power	P _{beam}	MW	4	≤ 5
Converter length	I _{conv}	cm	40	≤ 85
Converter radius (cylinder)	r _{conv}	cm	8	<15
Hg temperature	T _{conv}	°C	150 (tbc)	< 357
Hg flow rate	Q _{conv}	kg/s	200 (tbc)	< 3000
Hg speed	V _{conv}	m/s	2 (tbc)	< 30
Hg pressure drop	ΔP_1	bar	tbc	<< 100
Hg overpressure	ΔP_2	bar	tbc	<< 100
UC _x temperature	T _{targ}	°C	2000	500 – 2500

SPL meeting, CERN – Geneva, Switzerland

7 December, 2005

Alternative 4 MW Target Configurations

3.0

4.2

3.8

4.0

1 0.2

UCx/BeO solid Targets

600

Comparative Study: Primary Flux Distribution

• 1 GeV proton range ~46 cm: acceptable confinement cm of primary protons inside the target assembly

7 December, 2005

80

1011

10¹⁰

10⁹

10⁸

Primary Escapes Energy Spectra

- Average energies of the primary radial escapes: 270 MeV and 480 MeV (for 1 and 3.5 GeV protons, respectively)
- Through the end cap: 140 MeV for 1 GeV and 1.4 GeV (!!) for 3.5 GeV primaries
- 90% of the escaping protons are above 100 MeV for a 3.5 GeV beam

EURISOL

Design Study

Residual Nuclei Distributions in Hg

• At higher proton energy nuclei from evaporation and multi-fragmentation (light nuclei) are more abundant

EURISOL

Design Study

Neutron Flux Distribution

 Neutron fluxes in the fission target
~10¹⁴ n/cm²/s/MW of beam

- Spallation neutrons produced over a larger volume
- Neutron flux still dominated by neutrons below 20 MeV

7 December, 2005

Neutron Energy Spectra

- Small differences in the neutron flux spectrum radially, except for the very high-energy tail from direct nucleon interaction
- Larger HE (10 MeV 3 GeV) neutron flux exiting the end cap, producing spallation (neutron source displacement) and structural damage (dpa) in the downstream structures (e.g. fission target, reflector...)

Spallation Efficiency

 Spallation neutron yields rapidly increasing with energy up to 600 MeV, slowly increasing above those energies

• Spallation efficiency (Figure b) reaching a maximum between 1 and 2 GeV (depending on the spallation target material), decreasing beyond these energies due to competing reactions (i.e. π -production)

40 Y(cm)1.0 GeV 10¹² 35 30 -10^{11} 25 20 -10¹⁰ 15 10 109 5 0 20 -20 60 0 40 80 X(cm)40 Y(cm)3.5 GeV 012 35 30 -10¹¹ 25 10¹⁰ 20 15 10⁹ 10 5 10⁸ 0 -20 20 60 80 0 40 X(cm)

Fission density (fissions/cm³/s/MW of beam)

• Similar fission densities in the radial region (10¹¹ fiss/cm³/s/MW), with slightly more fissions in the 1 GeV case

• In the 3.5 GeV case (possibly HE) fission density peak in the beam axis

SPL meeting, CERN – Geneva, Switzerland

7 December, 2005

• Non-homogenous

• Similar behaviour radially, but 10 times more HE fissions in the beam axis, with a large gradient

 Impact in terms of ion yields...

HE fission density (fissions[>20 MeV]/cm³/s/MW of beam)

Y(cm)

7 December, 2005

p or n_{fast} vs. n_{th} Induced Fissions

Radioisotope Yields in U_{nat}C₃ Target

Harder particle (proton and neutron) spectrum in the case 3.5 GeV primaries \rightarrow more high-energy neutron-induced fissions and spallation \rightarrow increase in the symmetrical fission products plus spallation products \rightarrow production of isobars from combined reactions and projectile energies

Small differences in terms of asymmetrical (low-energy) fission fragments

18

EURISOL

Design Study

Power Densities (I)

- Maximum energy deposition in the first 10 cm beyond the interaction $\underbrace{\mathfrak{S}}_{\lambda}$ point, in Hg
- In the 1 GeV case: maximum power density in Hg: ~2 kW/cm³/MW of beam
- 50% reduction in maximum power density (to ~1 kW/cm³/MW of beam) if 3.5 GeV protons are used
- Power density in the U_{nat}C₃ target: ~5 W/cm³/MW homogenously distributed in both cases

7 December, 2005

Power Densities (II)

Distance along the hg target axis (cm)

- Factor of 2 reduction in the maximum power density in Hg, for 3.5 GeV
- Factor of 3.6 reduction in the power deposited in the beam window, for 3.5 GeV (28% of the energy deposited in the case of 1 GeV protons)

• Increasing difficulties in **confining the incident particle** beam with energy \rightarrow A 3.5 GeV proton beam on a compact spallation target requires a **beam dump** and special attention to the **displaced neutron source** (structural **damage** and **radioprotection** hazard)

No increase in the spallation neutron yields or fission densities for 3.5 GeV protons, but a larger Hg target activation; power densities of ~1 kW/cm³/MW of beam for this energies, ~50% lower than in the case of 1 GeV protons

 Similar isotopic yields for both proton energies. Spallation in the fission target occurring for higher energies, in particular in the end cap

• The nominal time structure of the proton beam is **CW**. A pulsed beam could be studied but important technical problems in terms of **pressure waves** and **cavitation** are foreseen (experience from SNS)

• A synergy between the SPL requirements and the EURISOL design could be found through a 1 GeV extraction line and perhaps(?) a first stage CW beam, being pulsed later for the neutrino factory

Discussion starts...

7 December, 2005

Neutron Energy Spectrum vs Fission Cross-Section in Uranium

1x10-3

- Significantly harder spectrum for the Hg-J, with a peak neutron energy between 1 – 2 MeV, compared to 300 keV for BLD and 700 keV for IS
- Very low fission cross-section in ²³⁸U below 2 MeV (~10⁻⁴ barns). Optimum energy: 35 MeV
- Use of natural uranium: σ_{f} in ^{235}U (0.7% wt.): at least 2 barns
- Further gain if neutron flux is reflected (e.g. BeO)

1x10⁻⁸ 1x10⁻⁷ 1x10⁻⁶ 1x10⁻⁵ 1x10⁻⁴ 1x10⁻³ 1x10⁻² 1x10⁻¹

Energy (MeV)

7 December, 2005

 1×10^{1}

 1×10^{2}

 $1x10^{0}$

EURISOL

Design Study

Fission Density Distribution: U_{nat}C vs ²³⁸UC

• With ²³⁸UC less isotropic distribution and fission yield reduced by factor 3

SPL meeting, CERN – Geneva, Switzerland

Radioisotope yields in UC_x targets

← At high masses it is characterized by the presence of acivation products (Pu239 !!) ==> dominates over fission !!

Three very narrow peaks corresponding to the evaporation of light nuclei such as (deuterons, tritons, ³He and α) ==> very few

twice as much fission in radial position

7 December, 2005

EURISOL

Design Study

Power Densities (3)

- Increasing σ_{beam} from 15 to 25 mm or taking parabolic beam of at least 45 mm radius \rightarrow reduce Δ T in Hg by a factor 2 - 2.5
- Doubling the flow rate (~2 m/s) will reduce ΔT by factor 2

SPL meeting, CERN – Geneva, Switzerland

7 December, 2005

• ~75% of the beam energy is contained inside the target and that σ only has an impact on which radius contains ~50% of the energy (for σ = 2 mm, this occurs at 3 cm, whereas for σ = 30 mm, it happens at 6 cm).

• using a parabolic beam of at least 4.5 cm radius , would reduce by 40% the energy density in the Hg target

Baseline Design

- BLD: Shape of Hg target optimised for neutron production (neutron balance)
- 15 mm sigma proton beam, fully contained in the Hg target
- U_{nat}C₃ (3 g/cm³) fission target, to also induce fission with neutrons below 1 MeV. Higher yields if high-density carbide is used
- Use of BeO reflector to improve neutron economy, to shield HE particles and, possibly, to produce 6He for the beta-beam, through (n,α) reactions in ⁹Be

- BLD: Integration problems due to the large weight of the assembly and large volume of fission target
- Possibility of further reduction in Hg target dimensions → Intermediate solution (IS)

- Hg-J: designed for high-energy neutron fluxes in the fission target
- 4 mm sigma proton beam, mostly contained in the 4 cm diameter Hg Jet
- Fission targets closer to the Hg-J and the proton beam 29

